Train a Support Vector Machine model for classification or regression tasks.
cuda_ml_svm(x, ...) # S3 method for default cuda_ml_svm(x, ...) # S3 method for data.frame cuda_ml_svm( x, y, cost = 1, kernel = c("rbf", "tanh", "polynomial", "linear"), gamma = NULL, coef0 = 0, degree = 3L, tol = 0.001, max_iter = NULL, nochange_steps = 1000L, cache_size = 1024, epsilon = 0.1, sample_weights = NULL, cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"), ... ) # S3 method for matrix cuda_ml_svm( x, y, cost = 1, kernel = c("rbf", "tanh", "polynomial", "linear"), gamma = NULL, coef0 = 0, degree = 3L, tol = 0.001, max_iter = NULL, nochange_steps = 1000L, cache_size = 1024, epsilon = 0.1, sample_weights = NULL, cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"), ... ) # S3 method for formula cuda_ml_svm( formula, data, cost = 1, kernel = c("rbf", "tanh", "polynomial", "linear"), gamma = NULL, coef0 = 0, degree = 3L, tol = 0.001, max_iter = NULL, nochange_steps = 1000L, cache_size = 1024, epsilon = 0.1, sample_weights = NULL, cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"), ... ) # S3 method for recipe cuda_ml_svm( x, data, cost = 1, kernel = c("rbf", "tanh", "polynomial", "linear"), gamma = NULL, coef0 = 0, degree = 3L, tol = 0.001, max_iter = NULL, nochange_steps = 1000L, cache_size = 1024, epsilon = 0.1, sample_weights = NULL, cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace"), ... )
x | Depending on the context: * A __data frame__ of predictors. * A __matrix__ of predictors. * A __recipe__ specifying a set of preprocessing steps * created from [recipes::recipe()]. * A __formula__ specifying the predictors and the outcome. |
---|---|
... | Optional arguments; currently unused. |
y | A numeric vector (for regression) or factor (for classification) of desired responses. |
cost | A positive number for the cost of predicting a sample within or on the wrong side of the margin. Default: 1. |
kernel | Type of the SVM kernel function (must be one of "rbf", "tanh", "polynomial", or "linear"). Default: "rbf". |
gamma | The gamma coefficient (only relevant to polynomial, RBF, and tanh kernel functions, see explanations below). Default: 1 / (num features). The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product. |
coef0 | The 0th coefficient (only applicable to polynomial and tanh kernel functions, see explanations below). Default: 0. The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product. |
degree | Degree of the polynomial kernel function (note: not applicable to other kernel types, see explanations below). Default: 3. The following kernels are implemented: - RBF K(x_1, x_2) = exp(-gamma |x_1-x_2|^2) - TANH K(x_1, x_2) = tanh(gamma <x_1,x_2> + coef0) - POLYNOMIAL K(x_1, x_2) = (gamma <x_1,x_2> + coef0)^degree - LINEAR K(x_1,x_2) = <x_1,x_2>, where < , > denotes the dot product. |
tol | Tolerance to stop fitting. Default: 1e-3. |
max_iter | Maximum number of outer iterations in SmoSolver. Default: 100 * (num samples). |
nochange_steps | Number of steps with no change w.r.t convergence. Default: 1000. |
cache_size | Size of kernel cache (MiB) in device memory. Default: 1024. |
epsilon | Espsilon parameter of the epsilon-SVR model. There is no penalty for points that are predicted within the epsilon-tube around the target values. Please note this parameter is only relevant for regression tasks. Default: 0.1. |
sample_weights | Optional weight assigned to each input data point. |
cuML_log_level | Log level within cuML library functions. Must be one of "off", "critical", "error", "warn", "info", "debug", "trace". Default: off. |
formula | A formula specifying the outcome terms on the left-hand side, and the predictor terms on the right-hand side. |
data | When a __recipe__ or __formula__ is used, |
A SVM classifier / regressor object that can be used with the 'predict' S3 generic to make predictions on new data points.