Dimensionality reduction using Truncated Singular Value Decomposition.
cuda_ml_tsvd( x, n_components = 2L, eig_algo = c("dq", "jacobi"), tol = 1e-07, n_iters = 15L, transform_input = TRUE, cuML_log_level = c("off", "critical", "error", "warn", "info", "debug", "trace") )
x | The input matrix or dataframe. Each data point should be a row and should consist of numeric values only. |
---|---|
n_components | Desired dimensionality of output data. Must be strictly
less than |
eig_algo | Eigen decomposition algorithm to be applied to the covariance matrix. Valid choices are "dq" (divid-and-conquer method for symmetric matrices) and "jacobi" (the Jacobi method for symmetric matrices). Default: "dq". |
tol | Tolerance for singular values computed by the Jacobi method. Default: 1e-7. |
n_iters | Maximum number of iterations for the Jacobi method. Default: 15. |
transform_input | If TRUE, then compute an approximate representation of the input data. Default: TRUE. |
cuML_log_level | Log level within cuML library functions. Must be one of "off", "critical", "error", "warn", "info", "debug", "trace". Default: off. |
A TSVD model object with the following attributes:
- "components": a matrix of n_components
rows to be used for
dimensionalitiy reduction on new data points.
- "explained_variance": (only present if "transform_input" is set to TRUE)
amount of variance within the input data explained by each component.
- "explained_variance_ratio": (only present if "transform_input" is set to
TRUE) fraction of variance within the input data explained by each
component.
- "singular_values": The singular values corresponding to each component.
The singular values are equal to the 2-norms of the n_components
variables in the lower-dimensional space.
- "tsvd_params": opaque pointer to TSVD parameters which will be used for
performing inverse transforms.
#> list() #> attr(,"class") #> [1] "cuda_ml_tsvd" "list"