model_melresnet.Rd
MelResNet layer uses a stack of ResBlocks on spectrogram. Pass the input through the MelResNet layer.
model_melresnet(
n_res_block = 10,
n_freq = 128,
n_hidden = 128,
n_output = 128,
kernel_size = 5
)
the number of ResBlock in stack. (Default: 10
)
the number of bins in a spectrogram. (Default: 128
)
the number of hidden dimensions of resblock. (Default: 128
)
the number of output dimensions of melresnet. (Default: 128
)
the number of kernel size in the first Conv1d layer. (Default: 5
)
Tensor shape: (n_batch, n_output, n_time - kernel_size + 1)
forward param: specgram (Tensor): the input sequence to the MelResNet layer (n_batch, n_freq, n_time).
if(torch::torch_is_installed()) {
melresnet = model_melresnet()
input = torch::torch_rand(10, 128, 512) # a random spectrogram
output = melresnet(input) # shape: (10, 128, 508)
}