Interpretation metrics from a TabNet model
tabnet_explain(object, new_data)
# Default S3 method
tabnet_explain(object, new_data)
# S3 method for class 'tabnet_fit'
tabnet_explain(object, new_data)
# S3 method for class 'tabnet_pretrain'
tabnet_explain(object, new_data)
# S3 method for class 'model_fit'
tabnet_explain(object, new_data)
Returns a list with
M_explain
: the aggregated feature importance masks as detailed in
TabNet's paper.
masks
a list containing the masks for each step.
set.seed(2021)
n <- 1000
x <- data.frame(
x = rnorm(n),
y = rnorm(n),
z = rnorm(n)
)
y <- x$x
fit <- tabnet_fit(x, y, epochs = 20,
num_steps = 1,
batch_size = 512,
attention_width = 1,
num_shared = 1,
num_independent = 1)
ex <- tabnet_explain(fit, x)