References
Arjovsky, Martín, Soumith Chintala, and Léon Bottou. 2017. “Wasserstein GAN.” ArXiv abs/1701.07875.
Buda, Mateusz, Ashirbani Saha, and Maciej A. Mazurowski. 2019. “Association of Genomic Subtypes of Lower-Grade Gliomas with Shape Features Automatically Extracted by a Deep Learning Algorithm.” Computers in Biology and Medicine 109: 218–25. https://doi.org/https://doi.org/10.1016/j.compbiomed.2019.05.002.
Clanuwat, Tarin, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David Ha. 2018. “Deep Learning for Classical Japanese Literature.” December 3, 2018. http://arxiv.org/abs/cs.CV/1812.01718.
Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Generative Adversarial Networks.” http://arxiv.org/abs/1406.2661.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. “Deep Residual Learning for Image Recognition.” CoRR abs/1512.03385. http://arxiv.org/abs/1512.03385.
Higgins, Irina, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew M Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. “Beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework.” In ICLR.
Kingma, Diederik P., and Jimmy Ba. 2017. “Adam: A Method for Stochastic Optimization.” http://arxiv.org/abs/1412.6980.
Kingma, Diederik P, and Max Welling. 2013. “Auto-Encoding Variational Bayes.” http://arxiv.org/abs/1312.6114.
Loshchilov, Ilya, and Frank Hutter. 2016. “SGDR: Stochastic Gradient Descent with Restarts.” CoRR abs/1608.03983. http://arxiv.org/abs/1608.03983.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” CoRR abs/1505.04597. http://arxiv.org/abs/1505.04597.
Smith, Leslie N. 2015. “No More Pesky Learning Rate Guessing Games.” CoRR abs/1506.01186. http://arxiv.org/abs/1506.01186.
Zhao, Shengjia, Jiaming Song, and Stefano Ermon. 2017. “InfoVAE: Information Maximizing Variational Autoencoders.” CoRR abs/1706.02262. http://arxiv.org/abs/1706.02262.