# Packages ----------------------------------------------------------------
library(torch)
library(torchvision)
library(luz)
# Datasets and loaders ----------------------------------------------------
dir <- "./mnist" # caching directory
train_ds <- mnist_dataset(
dir,
download = TRUE,
transform = transform_to_tensor
)
test_ds <- mnist_dataset(
dir,
train = FALSE,
transform = transform_to_tensor
)
train_dl <- dataloader(train_ds, batch_size = 128, shuffle = TRUE)
test_dl <- dataloader(test_ds, batch_size = 128)
# Building the network ---------------------------------------------------
net <- nn_module(
"Net",
initialize = function(accumulate_batches = 2) {
self$conv1 <- nn_conv2d(1, 32, 3, 1)
self$conv2 <- nn_conv2d(32, 64, 3, 1)
self$dropout1 <- nn_dropout(0.25)
self$dropout2 <- nn_dropout(0.5)
self$fc1 <- nn_linear(9216, 128)
self$fc2 <- nn_linear(128, 10)
self$accumulate_batches <- accumulate_batches
},
forward = function(x) {
x <- self$conv1(x)
x <- nnf_relu(x)
x <- self$conv2(x)
x <- nnf_relu(x)
x <- nnf_max_pool2d(x, 2)
x <- self$dropout1(x)
x <- torch_flatten(x, start_dim = 2)
x <- self$fc1(x)
x <- nnf_relu(x)
x <- self$dropout2(x)
x <- self$fc2(x)
x
},
step = function() {
# we implement a custom step method that runs for every
# batch in training and validation.
# calculate predictions. we save them in `ctx$pred` so other parts of luz
# can use it.
ctx$pred <- ctx$model(ctx$input)
# we now calculate the loss. also save it in `ctx$loss` so, for example,
# it's correctly logged.
ctx$loss <- ctx$loss_fn(ctx$pred, ctx$target)
# `ctx$training` is set automatically to `TRUE` during the training phase
if (ctx$training) {
ctx$loss <- ctx$loss/self$accumulate_batches
ctx$loss$backward()
}
# only after `accumulate_batches` that we do a optimizer step, so we use
# the virtual batch_size.
if (ctx$training && (ctx$iter %% self$accumulate_batches == 0)) {
opt <- ctx$optimizers[[1]]
opt$step()
opt$zero_grad()
}
}
)
# Train -------------------------------------------------------------------
fitted <- net %>%
set_hparams(accumulate_batches = 10) %>%
setup(
loss = nn_cross_entropy_loss(),
optimizer = torch::optim_adam,
metrics = list(
luz_metric_accuracy()
)
) %>%
fit(train_dl, valid_data = test_dl, epochs = 10)
# Serialization -----------------------------------------------------------
luz_save(fitted, "mnist-virtual-batch_size.pt")