Plot tabnet_explain mask importance heatmap
autoplot.tabnet_explain(
object,
type = c("mask_agg", "steps"),
quantile = 1,
...
)
A tabnet_explain
object as a result of tabnet_explain()
.
a character value. Either "mask_agg"
the default, for a single
heatmap of aggregated mask importance per predictor along the dataset,
or "steps"
for one heatmap at each mask step.
numerical value between 0 and 1. Provides quantile clipping of the mask values
not used.
A ggplot
object.
Plot the tabnet_explain
object mask importance per variable along the predicted dataset.
type="mask_agg"
output a single heatmap of mask aggregated values,
type="steps"
provides a plot faceted along the n_steps
mask present in the model.
quantile=.995
may be used for strong outlier clipping, in order to better highlight
low values. quantile=1
, the default, do not clip any values.
library(ggplot2)
data("attrition", package = "modeldata")
## Single-outcome binary classification of `Attrition` in `attrition` dataset
attrition_fit <- tabnet_fit(Attrition ~. , data=attrition, epoch=11)
attrition_explain <- tabnet_explain(attrition_fit, attrition)
# Plot the model aggregated mask interpretation heatmap
autoplot(attrition_explain)
## Multi-outcome regression on `Sale_Price` and `Pool_Area` in `ames` dataset,
data("ames", package = "modeldata")
ids <- sample(nrow(ames), 256)
x <- ames[ids,-which(names(ames) %in% c("Sale_Price", "Pool_Area"))]
y <- ames[ids, c("Sale_Price", "Pool_Area")]
ames_fit <- tabnet_fit(x, y, epochs = 5, verbose=TRUE)
#> [Epoch 001] Loss: 18433253376.000000
#> [Epoch 002] Loss: 18433202176.000000
#> [Epoch 003] Loss: 18433118208.000000
#> [Epoch 004] Loss: 18433050624.000000
#> [Epoch 005] Loss: 18432944128.000000
ames_explain <- tabnet_explain(ames_fit, x)
autoplot(ames_explain, quantile = 0.99)