Computes the solution X to the system torch_tensordot(A, X) = B.
Source: R/linalg.R
linalg_tensorsolve.RdIf m is the product of the first B\ .ndim dimensions of A and
n is the product of the rest of the dimensions, this function expects m and n to be equal.
The returned tensor x satisfies
tensordot(A, x, dims=x$ndim) == B.
Details
If dims is specified, A will be reshaped as
A = movedim(A, dims, seq(len(dims) - A$ndim + 1, 0))
Supports inputs of float, double, cfloat and cdouble dtypes.
See also
linalg_tensorinv()computes the multiplicative inverse oftorch_tensordot().
Other linalg:
linalg_cholesky(),
linalg_cholesky_ex(),
linalg_det(),
linalg_eig(),
linalg_eigh(),
linalg_eigvals(),
linalg_eigvalsh(),
linalg_householder_product(),
linalg_inv(),
linalg_inv_ex(),
linalg_lstsq(),
linalg_matrix_norm(),
linalg_matrix_power(),
linalg_matrix_rank(),
linalg_multi_dot(),
linalg_norm(),
linalg_pinv(),
linalg_qr(),
linalg_slogdet(),
linalg_solve(),
linalg_solve_triangular(),
linalg_svd(),
linalg_svdvals(),
linalg_tensorinv(),
linalg_vector_norm()
Examples
if (torch_is_installed()) {
A <- torch_eye(2 * 3 * 4)$reshape(c(2 * 3, 4, 2, 3, 4))
B <- torch_randn(2 * 3, 4)
X <- linalg_tensorsolve(A, B)
X$shape
torch_allclose(torch_tensordot(A, X, dims = X$ndim), B)
A <- torch_randn(6, 4, 4, 3, 2)
B <- torch_randn(4, 3, 2)
X <- linalg_tensorsolve(A, B, dims = c(1, 3))
A <- A$permute(c(2, 4, 5, 1, 3))
torch_allclose(torch_tensordot(A, X, dims = X$ndim), B, atol = 1e-6)
}
#> [1] FALSE