Package index
-
torch_empty() - Empty
-
torch_arange() - Arange
-
torch_eye() - Eye
-
torch_full() - Full
-
torch_linspace() - Linspace
-
torch_logspace() - Logspace
-
torch_ones() - Ones
-
torch_rand() - Rand
-
torch_randint() - Randint
-
torch_randn() - Randn
-
torch_randperm() - Randperm
-
torch_zeros() - Zeros
-
torch_empty_like() - Empty_like
-
torch_full_like() - Full_like
-
torch_ones_like() - Ones_like
-
torch_rand_like() - Rand_like
-
torch_randint_like() - Randint_like
-
torch_randn_like() - Randn_like
-
torch_zeros_like() - Zeros_like
-
as_array() - Converts to array
-
torch_tensor_from_buffer()buffer_from_torch_tensor() - Creates a tensor from a buffer of memory
-
torch_set_default_dtype()torch_get_default_dtype() - Gets and sets the default floating point dtype.
-
is_torch_device() - Checks if object is a device
-
is_torch_dtype() - Check if object is a torch data type
-
torch_float32()torch_float()torch_float64()torch_double()torch_cfloat32()torch_chalf()torch_cfloat()torch_cfloat64()torch_cdouble()torch_cfloat128()torch_float16()torch_half()torch_bfloat16()torch_uint8()torch_int8()torch_int16()torch_short()torch_int32()torch_int()torch_int64()torch_long()torch_bool()torch_quint8()torch_qint8()torch_qint32() - Torch data types
-
torch_finfo() - Floating point type info
-
torch_iinfo() - Integer type info
-
torch_per_channel_affine()torch_per_tensor_affine()torch_per_channel_symmetric()torch_per_tensor_symmetric() - Creates the corresponding Scheme object
-
torch_reduction_sum()torch_reduction_mean()torch_reduction_none() - Creates the reduction objet
-
is_torch_layout() - Check if an object is a torch layout.
-
is_torch_memory_format() - Check if an object is a memory format
-
is_torch_qscheme() - Checks if an object is a QScheme
-
is_undefined_tensor() - Checks if a tensor is undefined
-
load_state_dict() - Load a state dict file
-
torch_load() - Loads a saved object
-
torch_save() - Saves an object to a disk file.
-
torch_serialize() - Serialize a torch object returning a raw object
-
clone_module() - Clone a torch module.
-
torch_set_num_threads()torch_set_num_interop_threads()torch_get_num_interop_threads()torch_get_num_threads() - Number of threads
-
torch_abs() - Abs
-
torch_absolute() - Absolute
-
torch_acos() - Acos
-
torch_acosh() - Acosh
-
torch_adaptive_avg_pool1d() - Adaptive_avg_pool1d
-
torch_add() - Add
-
torch_addbmm() - Addbmm
-
torch_addcdiv() - Addcdiv
-
torch_addcmul() - Addcmul
-
torch_addmm() - Addmm
-
torch_addmv() - Addmv
-
torch_addr() - Addr
-
torch_allclose() - Allclose
-
torch_amax() - Amax
-
torch_amin() - Amin
-
torch_angle() - Angle
-
torch_arccos() - Arccos
-
torch_arccosh() - Arccosh
-
torch_arcsin() - Arcsin
-
torch_arcsinh() - Arcsinh
-
torch_arctan() - Arctan
-
torch_arctanh() - Arctanh
-
torch_argmax - Argmax
-
torch_argmin - Argmin
-
torch_argsort() - Argsort
-
torch_as_strided() - As_strided
-
torch_asin() - Asin
-
torch_asinh() - Asinh
-
torch_atan() - Atan
-
torch_atan2() - Atan2
-
torch_atanh() - Atanh
-
torch_atleast_1d() - Atleast_1d
-
torch_atleast_2d() - Atleast_2d
-
torch_atleast_3d() - Atleast_3d
-
torch_avg_pool1d() - Avg_pool1d
-
torch_baddbmm() - Baddbmm
-
torch_bartlett_window() - Bartlett_window
-
torch_bernoulli() - Bernoulli
-
torch_bincount - Bincount
-
torch_bitwise_and() - Bitwise_and
-
torch_bitwise_not() - Bitwise_not
-
torch_bitwise_or() - Bitwise_or
-
torch_bitwise_xor() - Bitwise_xor
-
torch_blackman_window() - Blackman_window
-
torch_block_diag() - Block_diag
-
torch_bmm() - Bmm
-
torch_broadcast_tensors() - Broadcast_tensors
-
torch_bucketize() - Bucketize
-
torch_can_cast() - Can_cast
-
torch_cartesian_prod() - Cartesian_prod
-
torch_cat() - Cat
-
torch_cdist() - Cdist
-
torch_ceil() - Ceil
-
torch_celu() - Celu
-
torch_celu_() - Celu_
-
torch_chain_matmul() - Chain_matmul
-
torch_channel_shuffle() - Channel_shuffle
-
torch_cholesky() - Cholesky
-
torch_cholesky_inverse() - Cholesky_inverse
-
torch_cholesky_solve() - Cholesky_solve
-
torch_chunk() - Chunk
-
torch_clamp() - Clamp
-
torch_clip() - Clip
-
torch_clone() - Clone
-
torch_combinations() - Combinations
-
torch_complex() - Complex
-
torch_conj() - Conj
-
torch_conv1d() - Conv1d
-
torch_conv2d() - Conv2d
-
torch_conv3d() - Conv3d
-
torch_conv_tbc() - Conv_tbc
-
torch_conv_transpose1d() - Conv_transpose1d
-
torch_conv_transpose2d() - Conv_transpose2d
-
torch_conv_transpose3d() - Conv_transpose3d
-
torch_cos() - Cos
-
torch_cosh() - Cosh
-
torch_cosine_similarity() - Cosine_similarity
-
torch_count_nonzero() - Count_nonzero
-
torch_cross() - Cross
-
torch_cummax() - Cummax
-
torch_cummin() - Cummin
-
torch_cumprod() - Cumprod
-
torch_cumsum() - Cumsum
-
torch_deg2rad() - Deg2rad
-
torch_dequantize() - Dequantize
-
torch_det() - Det
-
torch_device() - Create a Device object
-
torch_diag() - Diag
-
torch_diag_embed() - Diag_embed
-
torch_diagflat() - Diagflat
-
torch_diagonal() - Diagonal
-
torch_diff() - Computes the n-th forward difference along the given dimension.
-
torch_digamma() - Digamma
-
torch_dist() - Dist
-
torch_div() - Div
-
torch_divide() - Divide
-
torch_dot() - Dot
-
torch_dstack() - Dstack
-
torch_eig - Eig
-
torch_einsum() - Einsum
-
torch_empty_strided() - Empty_strided
-
torch_eq() - Eq
-
torch_equal() - Equal
-
torch_erf() - Erf
-
torch_erfc() - Erfc
-
torch_erfinv() - Erfinv
-
torch_exp() - Exp
-
torch_exp2() - Exp2
-
torch_expm1() - Expm1
-
torch_fft_fft() - Fft
-
torch_fft_fftfreq() - fftfreq
-
torch_fft_ifft() - Ifft
-
torch_fft_irfft() - Irfft
-
torch_fft_rfft() - Rfft
-
torch_fix() - Fix
-
torch_flatten() - Flatten
-
torch_flip() - Flip
-
torch_fliplr() - Fliplr
-
torch_flipud() - Flipud
-
torch_floor() - Floor
-
torch_floor_divide() - Floor_divide
-
torch_fmod() - Fmod
-
torch_frac() - Frac
-
torch_gather() - Gather
-
torch_gcd() - Gcd
-
torch_ge() - Ge
-
torch_generator() - Create a Generator object
-
torch_geqrf() - Geqrf
-
torch_ger() - Ger
-
torch_get_rng_state()torch_set_rng_state()cuda_get_rng_state()cuda_set_rng_state() - RNG state management
-
torch_greater() - Greater
-
torch_greater_equal() - Greater_equal
-
torch_gt() - Gt
-
torch_hamming_window() - Hamming_window
-
torch_hann_window() - Hann_window
-
torch_heaviside() - Heaviside
-
torch_histc() - Histc
-
torch_hstack() - Hstack
-
torch_hypot() - Hypot
-
torch_i0() - I0
-
torch_imag() - Imag
-
torch_index() - Index torch tensors
-
torch_index_put() - Modify values selected by
indices.
-
torch_index_put_() - In-place version of
torch_index_put.
-
torch_index_select() - Index_select
-
torch_install_path() - A simple exported version of install_path Returns the torch installation path.
-
torch_inverse() - Inverse
-
torch_is_complex() - Is_complex
-
torch_is_floating_point() - Is_floating_point
-
torch_is_installed() - Verifies if torch is installed
-
torch_is_nonzero() - Is_nonzero
-
torch_isclose() - Isclose
-
torch_isfinite() - Isfinite
-
torch_isinf() - Isinf
-
torch_isnan() - Isnan
-
torch_isneginf() - Isneginf
-
torch_isposinf() - Isposinf
-
torch_isreal() - Isreal
-
torch_istft() - Istft
-
torch_kaiser_window() - Kaiser_window
-
torch_kron() - Kronecker product
-
torch_kthvalue() - Kthvalue
-
torch_strided()torch_sparse_coo() - Creates the corresponding layout
-
torch_lcm() - Lcm
-
torch_le() - Le
-
torch_lerp() - Lerp
-
torch_less() - Less
-
torch_less_equal() - Less_equal
-
torch_lgamma() - Lgamma
-
torch_log() - Log
-
torch_log10() - Log10
-
torch_log1p() - Log1p
-
torch_log2() - Log2
-
torch_logaddexp() - Logaddexp
-
torch_logaddexp2() - Logaddexp2
-
torch_logcumsumexp() - Logcumsumexp
-
torch_logdet() - Logdet
-
torch_logical_and() - Logical_and
-
torch_logical_not - Logical_not
-
torch_logical_or() - Logical_or
-
torch_logical_xor() - Logical_xor
-
torch_logit() - Logit
-
torch_logsumexp() - Logsumexp
-
torch_lstsq - Lstsq
-
torch_lt() - Lt
-
torch_lu() - LU
-
torch_lu_solve() - Lu_solve
-
torch_lu_unpack() - Lu_unpack
-
torch_manual_seed()local_torch_manual_seed()with_torch_manual_seed() - Sets the seed for generating random numbers.
-
torch_masked_select() - Masked_select
-
torch_matmul() - Matmul
-
torch_matrix_exp() - Matrix_exp
-
torch_matrix_power() - Matrix_power
-
torch_matrix_rank - Matrix_rank
-
torch_max - Max
-
torch_maximum() - Maximum
-
torch_mean() - Mean
-
torch_median() - Median
-
torch_meshgrid() - Meshgrid
-
torch_min - Min
-
torch_minimum() - Minimum
-
torch_mm() - Mm
-
torch_mode() - Mode
-
torch_movedim() - Movedim
-
torch_mul() - Mul
-
torch_multinomial() - Multinomial
-
torch_multiply() - Multiply
-
torch_mv() - Mv
-
torch_mvlgamma() - Mvlgamma
-
torch_nanquantile() - Nanquantile
-
torch_nansum() - Nansum
-
torch_narrow() - Narrow
-
torch_ne() - Ne
-
torch_neg() - Neg
-
torch_negative() - Negative
-
torch_nextafter() - Nextafter
-
torch_nonzero() - Nonzero
-
torch_norm() - Norm
-
torch_normal() - Normal
-
torch_not_equal() - Not_equal
-
torch_orgqr() - Orgqr
-
torch_ormqr() - Ormqr
-
torch_outer() - Outer
-
torch_pdist() - Pdist
-
torch_pinverse() - Pinverse
-
torch_pixel_shuffle() - Pixel_shuffle
-
torch_poisson() - Poisson
-
torch_polar() - Polar
-
torch_polygamma() - Polygamma
-
torch_pow() - Pow
-
torch_prod() - Prod
-
torch_promote_types() - Promote_types
-
torch_qr() - Qr
-
torch_quantile() - Quantile
-
torch_quantize_per_channel() - Quantize_per_channel
-
torch_quantize_per_tensor() - Quantize_per_tensor
-
torch_rad2deg() - Rad2deg
-
torch_range() - Range
-
torch_real() - Real
-
torch_reciprocal() - Reciprocal
-
torch_relu() - Relu
-
torch_relu_() - Relu_
-
torch_remainder() - Remainder
-
torch_renorm() - Renorm
-
torch_repeat_interleave() - Repeat_interleave
-
torch_reshape() - Reshape
-
torch_result_type() - Result_type
-
torch_roll() - Roll
-
torch_rot90() - Rot90
-
torch_round() - Round
-
torch_rrelu_() - Rrelu_
-
torch_rsqrt() - Rsqrt
-
torch_scalar_tensor() - Scalar tensor
-
torch_searchsorted() - Searchsorted
-
torch_selu() - Selu
-
torch_selu_() - Selu_
-
torch_sgn() - Sgn
-
torch_sigmoid() - Sigmoid
-
torch_sign() - Sign
-
torch_signbit() - Signbit
-
torch_sin() - Sin
-
torch_sinh() - Sinh
-
torch_slogdet() - Slogdet
-
torch_sort - Sort
-
torch_sparse_coo_tensor() - Sparse_coo_tensor
-
torch_split() - Split
-
torch_sqrt() - Sqrt
-
torch_square() - Square
-
torch_squeeze() - Squeeze
-
torch_stack() - Stack
-
torch_std() - Std
-
torch_std_mean() - Std_mean
-
torch_stft() - Stft
-
torch_sub() - Sub
-
torch_subtract() - Subtract
-
torch_sum() - Sum
-
torch_svd() - Svd
-
torch_take() - Take
-
torch_take_along_dim() - Selects values from input at the 1-dimensional indices from indices along the given dim.
-
torch_tan() - Tan
-
torch_tanh() - Tanh
-
torch_tensor() - Converts R objects to a torch tensor
-
torch_tensor_from_buffer()buffer_from_torch_tensor() - Creates a tensor from a buffer of memory
-
torch_tensordot() - Tensordot
-
torch_threshold_() - Threshold_
-
torch_topk() - Topk
-
torch_trace() - Trace
-
torch_transpose() - Transpose
-
torch_trapz() - Trapz
-
torch_triangular_solve() - Triangular_solve
-
torch_tril() - Tril
-
torch_tril_indices() - Tril_indices
-
torch_triu() - Triu
-
torch_triu_indices() - Triu_indices
-
torch_true_divide() - TRUE_divide
-
torch_trunc() - Trunc
-
torch_unbind() - Unbind
-
torch_unique_consecutive() - Unique_consecutive
-
torch_unsafe_chunk() - Unsafe_chunk
-
torch_unsafe_split() - Unsafe_split
-
torch_unsqueeze() - Unsqueeze
-
torch_vander() - Vander
-
torch_var() - Var
-
torch_var_mean() - Var_mean
-
torch_vdot() - Vdot
-
torch_view_as_complex() - View_as_complex
-
torch_view_as_real() - View_as_real
-
torch_vstack() - Vstack
-
torch_where() - Where
-
broadcast_all() - Given a list of values (possibly containing numbers), returns a list where each value is broadcasted based on the following rules:
-
nn_adaptive_avg_pool1d() - Applies a 1D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_avg_pool2d() - Applies a 2D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_avg_pool3d() - Applies a 3D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_log_softmax_with_loss() - AdaptiveLogSoftmaxWithLoss module
-
nn_adaptive_max_pool1d() - Applies a 1D adaptive max pooling over an input signal composed of several input planes.
-
nn_adaptive_max_pool2d() - Applies a 2D adaptive max pooling over an input signal composed of several input planes.
-
nn_adaptive_max_pool3d() - Applies a 3D adaptive max pooling over an input signal composed of several input planes.
-
nn_aum_loss() - AUM loss
-
nn_avg_pool1d() - Applies a 1D average pooling over an input signal composed of several input planes.
-
nn_avg_pool2d() - Applies a 2D average pooling over an input signal composed of several input planes.
-
nn_avg_pool3d() - Applies a 3D average pooling over an input signal composed of several input planes.
-
nn_batch_norm1d() - BatchNorm1D module
-
nn_batch_norm2d() - BatchNorm2D
-
nn_batch_norm3d() - BatchNorm3D
-
nn_bce_loss() - Binary cross entropy loss
-
nn_bce_with_logits_loss() - BCE with logits loss
-
nn_bilinear() - Bilinear module
-
nn_buffer() - Creates a nn_buffer
-
nn_celu() - CELU module
-
nn_contrib_sparsemax() - Sparsemax activation
-
nn_conv1d() - Conv1D module
-
nn_conv2d() - Conv2D module
-
nn_conv3d() - Conv3D module
-
nn_conv_transpose1d() - ConvTranspose1D
-
nn_conv_transpose2d() - ConvTranpose2D module
-
nn_conv_transpose3d() - ConvTranpose3D module
-
nn_cosine_embedding_loss() - Cosine embedding loss
-
nn_cross_entropy_loss() - CrossEntropyLoss module
-
nn_ctc_loss() - The Connectionist Temporal Classification loss.
-
nn_dropout() - Dropout module
-
nn_dropout2d() - Dropout2D module
-
nn_dropout3d() - Dropout3D module
-
nn_elu() - ELU module
-
nn_embedding() - Embedding module
-
nn_embedding_bag() - Embedding bag module
-
nn_flatten() - Flattens a contiguous range of dims into a tensor.
-
nn_fractional_max_pool2d() - Applies a 2D fractional max pooling over an input signal composed of several input planes.
-
nn_fractional_max_pool3d() - Applies a 3D fractional max pooling over an input signal composed of several input planes.
-
nn_gelu() - GELU module
-
nn_glu() - GLU module
-
nn_group_norm() - Group normalization
-
nn_gru() - Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
-
nn_hardshrink() - Hardshwink module
-
nn_hardsigmoid() - Hardsigmoid module
-
nn_hardswish() - Hardswish module
-
nn_hardtanh() - Hardtanh module
-
nn_hinge_embedding_loss() - Hinge embedding loss
-
nn_identity() - Identity module
-
nn_init_calculate_gain() - Calculate gain
-
nn_init_constant_() - Constant initialization
-
nn_init_dirac_() - Dirac initialization
-
nn_init_eye_() - Eye initialization
-
nn_init_kaiming_normal_() - Kaiming normal initialization
-
nn_init_kaiming_uniform_() - Kaiming uniform initialization
-
nn_init_normal_() - Normal initialization
-
nn_init_ones_() - Ones initialization
-
nn_init_orthogonal_() - Orthogonal initialization
-
nn_init_sparse_() - Sparse initialization
-
nn_init_trunc_normal_() - Truncated normal initialization
-
nn_init_uniform_() - Uniform initialization
-
nn_init_xavier_normal_() - Xavier normal initialization
-
nn_init_xavier_uniform_() - Xavier uniform initialization
-
nn_init_zeros_() - Zeros initialization
-
nn_kl_div_loss() - Kullback-Leibler divergence loss
-
nn_l1_loss() - L1 loss
-
nn_layer_norm() - Layer normalization
-
nn_leaky_relu() - LeakyReLU module
-
nn_linear() - Linear module
-
nn_log_sigmoid() - LogSigmoid module
-
nn_log_softmax() - LogSoftmax module
-
nn_lp_pool1d() - Applies a 1D power-average pooling over an input signal composed of several input planes.
-
nn_lp_pool2d() - Applies a 2D power-average pooling over an input signal composed of several input planes.
-
nn_lstm() - Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
-
nn_margin_ranking_loss() - Margin ranking loss
-
nn_max_pool1d() - MaxPool1D module
-
nn_max_pool2d() - MaxPool2D module
-
nn_max_pool3d() - Applies a 3D max pooling over an input signal composed of several input planes.
-
nn_max_unpool1d() - Computes a partial inverse of
MaxPool1d.
-
nn_max_unpool2d() - Computes a partial inverse of
MaxPool2d.
-
nn_max_unpool3d() - Computes a partial inverse of
MaxPool3d.
-
nn_module() - Base class for all neural network modules.
-
nn_module_dict() - Container that allows named values
-
nn_module_list() - Holds submodules in a list.
-
nn_mse_loss() - MSE loss
-
nn_multi_margin_loss() - Multi margin loss
-
nn_multihead_attention() - MultiHead attention
-
nn_multilabel_margin_loss() - Multilabel margin loss
-
nn_multilabel_soft_margin_loss() - Multi label soft margin loss
-
nn_nll_loss() - Nll loss
-
nn_pairwise_distance() - Pairwise distance
-
nn_parameter() - Creates an
nn_parameter
-
nn_poisson_nll_loss() - Poisson NLL loss
-
nn_prelu() - PReLU module
-
nn_prune_head() - Prune top layer(s) of a network
-
nn_relu() - ReLU module
-
nn_relu6() - ReLu6 module
-
nn_rnn() - RNN module
-
nn_rrelu() - RReLU module
-
nn_selu() - SELU module
-
nn_sequential() - A sequential container
-
nn_sigmoid() - Sigmoid module
-
nn_silu() - Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function.
-
nn_smooth_l1_loss() - Smooth L1 loss
-
nn_soft_margin_loss() - Soft margin loss
-
nn_softmax() - Softmax module
-
nn_softmax2d() - Softmax2d module
-
nn_softmin() - Softmin
-
nn_softplus() - Softplus module
-
nn_softshrink() - Softshrink module
-
nn_softsign() - Softsign module
-
nn_tanh() - Tanh module
-
nn_tanhshrink() - Tanhshrink module
-
nn_threshold() - Threshold module
-
nn_transformer_encoder() - Transformer Encoder Module (R torch)
-
nn_transformer_encoder_layer() - Transformer Encoder Layer Module (R torch)
-
nn_triplet_margin_loss() - Triplet margin loss
-
nn_triplet_margin_with_distance_loss() - Triplet margin with distance loss
-
nn_unflatten() - Unflattens a tensor dim expanding it to a desired shape. For use with [nn_sequential.
-
nn_upsample() - Upsample module
-
nn_utils_clip_grad_norm_() - Clips gradient norm of an iterable of parameters.
-
nn_utils_clip_grad_value_() - Clips gradient of an iterable of parameters at specified value.
-
nn_utils_rnn_pack_padded_sequence() - Packs a Tensor containing padded sequences of variable length.
-
nn_utils_rnn_pack_sequence() - Packs a list of variable length Tensors
-
nn_utils_rnn_pad_packed_sequence() - Pads a packed batch of variable length sequences.
-
nn_utils_rnn_pad_sequence() - Pad a list of variable length Tensors with
padding_value
-
nn_utils_weight_norm - nn_utils_weight_norm
-
is_nn_module() - Checks if the object is an nn_module
-
is_nn_parameter() - Checks if an object is a nn_parameter
-
is_nn_buffer() - Checks if the object is a nn_buffer
-
nnf_adaptive_avg_pool1d() - Adaptive_avg_pool1d
-
nnf_adaptive_avg_pool2d() - Adaptive_avg_pool2d
-
nnf_adaptive_avg_pool3d() - Adaptive_avg_pool3d
-
nnf_adaptive_max_pool1d() - Adaptive_max_pool1d
-
nnf_adaptive_max_pool2d() - Adaptive_max_pool2d
-
nnf_adaptive_max_pool3d() - Adaptive_max_pool3d
-
nnf_affine_grid() - Affine_grid
-
nnf_alpha_dropout() - Alpha_dropout
-
nnf_area_under_min_fpr_fnr() - Area under the \(Min(FPR, FNR)\) (AUM)
-
nnf_avg_pool1d() - Avg_pool1d
-
nnf_avg_pool2d() - Avg_pool2d
-
nnf_avg_pool3d() - Avg_pool3d
-
nnf_batch_norm() - Batch_norm
-
nnf_bilinear() - Bilinear
-
nnf_binary_cross_entropy() - Binary_cross_entropy
-
nnf_binary_cross_entropy_with_logits() - Binary_cross_entropy_with_logits
-
nnf_celu()nnf_celu_() - Celu
-
nnf_contrib_sparsemax() - Sparsemax
-
nnf_conv1d() - Conv1d
-
nnf_conv2d() - Conv2d
-
nnf_conv3d() - Conv3d
-
nnf_conv_tbc() - Conv_tbc
-
nnf_conv_transpose1d() - Conv_transpose1d
-
nnf_conv_transpose2d() - Conv_transpose2d
-
nnf_conv_transpose3d() - Conv_transpose3d
-
nnf_cosine_embedding_loss() - Cosine_embedding_loss
-
nnf_cosine_similarity() - Cosine_similarity
-
nnf_cross_entropy() - Cross_entropy
-
nnf_ctc_loss() - Ctc_loss
-
nnf_dropout() - Dropout
-
nnf_dropout2d() - Dropout2d
-
nnf_dropout3d() - Dropout3d
-
nnf_elu()nnf_elu_() - Elu
-
nnf_embedding() - Embedding
-
nnf_embedding_bag() - Embedding_bag
-
nnf_fold() - Fold
-
nnf_fractional_max_pool2d() - Fractional_max_pool2d
-
nnf_fractional_max_pool3d() - Fractional_max_pool3d
-
nnf_gelu() - Gelu
-
nnf_glu() - Glu
-
nnf_grid_sample() - Grid_sample
-
nnf_group_norm() - Group_norm
-
nnf_gumbel_softmax() - Gumbel_softmax
-
nnf_hardshrink() - Hardshrink
-
nnf_hardsigmoid() - Hardsigmoid
-
nnf_hardswish() - Hardswish
-
nnf_hardtanh()nnf_hardtanh_() - Hardtanh
-
nnf_hinge_embedding_loss() - Hinge_embedding_loss
-
nnf_instance_norm() - Instance_norm
-
nnf_interpolate() - Interpolate
-
nnf_kl_div() - Kl_div
-
nnf_l1_loss() - L1_loss
-
nnf_layer_norm() - Layer_norm
-
nnf_leaky_relu() - Leaky_relu
-
nnf_linear() - Linear
-
nnf_local_response_norm() - Local_response_norm
-
nnf_log_softmax() - Log_softmax
-
nnf_logsigmoid() - Logsigmoid
-
nnf_lp_pool1d() - Lp_pool1d
-
nnf_lp_pool2d() - Lp_pool2d
-
nnf_margin_ranking_loss() - Margin_ranking_loss
-
nnf_max_pool1d() - Max_pool1d
-
nnf_max_pool2d() - Max_pool2d
-
nnf_max_pool3d() - Max_pool3d
-
nnf_max_unpool1d() - Max_unpool1d
-
nnf_max_unpool2d() - Max_unpool2d
-
nnf_max_unpool3d() - Max_unpool3d
-
nnf_mse_loss() - Mse_loss
-
nnf_multi_head_attention_forward() - Multi head attention forward
-
nnf_multi_margin_loss() - Multi_margin_loss
-
nnf_multilabel_margin_loss() - Multilabel_margin_loss
-
nnf_multilabel_soft_margin_loss() - Multilabel_soft_margin_loss
-
nnf_nll_loss() - Nll_loss
-
nnf_normalize() - Normalize
-
nnf_one_hot() - One_hot
-
nnf_pad() - Pad
-
nnf_pairwise_distance() - Pairwise_distance
-
nnf_pdist() - Pdist
-
nnf_pixel_shuffle() - Pixel_shuffle
-
nnf_poisson_nll_loss() - Poisson_nll_loss
-
nnf_prelu() - Prelu
-
nnf_relu()nnf_relu_() - Relu
-
nnf_relu6() - Relu6
-
nnf_rrelu()nnf_rrelu_() - Rrelu
-
nnf_selu()nnf_selu_() - Selu
-
nnf_sigmoid() - Sigmoid
-
nnf_silu() - Applies the Sigmoid Linear Unit (SiLU) function, element-wise. See
nn_silu()for more information.
-
nnf_smooth_l1_loss() - Smooth_l1_loss
-
nnf_soft_margin_loss() - Soft_margin_loss
-
nnf_softmax() - Softmax
-
nnf_softmin() - Softmin
-
nnf_softplus() - Softplus
-
nnf_softshrink() - Softshrink
-
nnf_softsign() - Softsign
-
nnf_tanhshrink() - Tanhshrink
-
nnf_threshold()nnf_threshold_() - Threshold
-
nnf_triplet_margin_loss() - Triplet_margin_loss
-
nnf_triplet_margin_with_distance_loss() - Triplet margin with distance loss
-
nnf_unfold() - Unfold
-
torch_device() - Create a Device object
-
local_device()with_device() - Device contexts
-
optimizer() - Creates a custom optimizer
-
optim_adadelta() - Adadelta optimizer
-
optim_adagrad() - Adagrad optimizer
-
optim_adam() - Implements Adam algorithm.
-
optim_adamw() - Implements AdamW algorithm
-
optim_asgd() - Averaged Stochastic Gradient Descent optimizer
-
optim_ignite_adagrad() - LibTorch implementation of Adagrad
-
optim_ignite_adam() - LibTorch implementation of Adam
-
optim_ignite_adamw() - LibTorch implementation of AdamW
-
optim_ignite_rmsprop() - LibTorch implementation of RMSprop
-
optim_ignite_sgd() - LibTorch implementation of SGD
-
optim_lbfgs() - LBFGS optimizer
-
optim_required() - Dummy value indicating a required value.
-
optim_rmsprop() - RMSprop optimizer
-
optim_rprop() - Implements the resilient backpropagation algorithm.
-
optim_sgd() - SGD optimizer
-
is_optimizer() - Checks if the object is a torch optimizer
-
optimizer_ignite() - Abstract Base Class for LibTorch Optimizers
-
OptimizerIgnite - Abstract Base Class for LibTorch Optimizers
-
lr_cosine_annealing() - Set the learning rate of each parameter group using a cosine annealing schedule
-
lr_lambda() - Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.
-
lr_multiplicative() - Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr.
-
lr_one_cycle() - Once cycle learning rate
-
lr_reduce_on_plateau() - Reduce learning rate on plateau
-
lr_scheduler() - Creates learning rate schedulers
-
lr_step() - Step learning rate decay
-
dataset() - Helper function to create an function that generates R6 instances of class
dataset
-
dataset_subset() - Dataset Subset
-
iterable_dataset() - Creates an iterable dataset
-
dataloader() - Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset.
-
dataloader_make_iter() - Creates an iterator from a DataLoader
-
dataloader_next() - Get the next element of a dataloader iterator
-
enumerate() - Enumerate an iterator
-
enumerate(<dataloader>) - Enumerate an iterator
-
tensor_dataset() - Dataset wrapping tensors.
-
is_dataloader() - Checks if the object is a dataloader
-
sampler() - Creates a new Sampler
-
Distribution - Generic R6 class representing distributions
-
distr_bernoulli() - Creates a Bernoulli distribution parameterized by
probsorlogits(but not both). Samples are binary (0 or 1). They take the value1with probabilitypand0with probability1 - p.
-
distr_categorical() - Creates a categorical distribution parameterized by either
probsorlogits(but not both).
-
distr_chi2() - Creates a Chi2 distribution parameterized by shape parameter
df. This is exactly equivalent todistr_gamma(alpha=0.5*df, beta=0.5)
-
distr_gamma() - Creates a Gamma distribution parameterized by shape
concentrationandrate.
-
distr_mixture_same_family() - Mixture of components in the same family
-
distr_multivariate_normal() - Gaussian distribution
-
distr_normal() - Creates a normal (also called Gaussian) distribution parameterized by
locandscale.
-
distr_poisson() - Creates a Poisson distribution parameterized by
rate, the rate parameter.
-
Constraint - Abstract base class for constraints.
-
autograd_backward() - Computes the sum of gradients of given tensors w.r.t. graph leaves.
-
autograd_function() - Records operation history and defines formulas for differentiating ops.
-
autograd_grad() - Computes and returns the sum of gradients of outputs w.r.t. the inputs.
-
autograd_set_grad_mode() - Set grad mode
-
with_no_grad()local_no_grad() - Temporarily modify gradient recording.
-
with_enable_grad()local_enable_grad() - Enable grad
-
with_detect_anomaly() - Context-manager that enable anomaly detection for the autograd engine.
-
AutogradContext - Class representing the context.
-
local_autocast()with_autocast()set_autocast()unset_autocast() - Autocast context manager
-
cuda_amp_grad_scaler() - Creates a gradient scaler
-
torch_manual_seed()local_torch_manual_seed()with_torch_manual_seed() - Sets the seed for generating random numbers.
-
torch_get_rng_state()torch_set_rng_state()cuda_get_rng_state()cuda_set_rng_state() - RNG state management
-
linalg_cholesky() - Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
-
linalg_cholesky_ex() - Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
-
linalg_cond() - Computes the condition number of a matrix with respect to a matrix norm.
-
linalg_det() - Computes the determinant of a square matrix.
-
linalg_eig() - Computes the eigenvalue decomposition of a square matrix if it exists.
-
linalg_eigh() - Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.
-
linalg_eigvals() - Computes the eigenvalues of a square matrix.
-
linalg_eigvalsh() - Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
-
linalg_householder_product() - Computes the first
ncolumns of a product of Householder matrices.
-
linalg_inv() - Computes the inverse of a square matrix if it exists.
-
linalg_inv_ex() - Computes the inverse of a square matrix if it is invertible.
-
linalg_lstsq() - Computes a solution to the least squares problem of a system of linear equations.
-
linalg_matrix_norm() - Computes a matrix norm.
-
linalg_matrix_power() - Computes the
n-th power of a square matrix for an integern.
-
linalg_matrix_rank() - Computes the numerical rank of a matrix.
-
linalg_multi_dot() - Efficiently multiplies two or more matrices
-
linalg_norm() - Computes a vector or matrix norm.
-
linalg_pinv() - Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
-
linalg_qr() - Computes the QR decomposition of a matrix.
-
linalg_slogdet() - Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix.
-
linalg_solve() - Computes the solution of a square system of linear equations with a unique solution.
-
linalg_solve_triangular() - Triangular solve
-
linalg_svd() - Computes the singular value decomposition (SVD) of a matrix.
-
linalg_svdvals() - Computes the singular values of a matrix.
-
linalg_tensorinv() - Computes the multiplicative inverse of
torch_tensordot()
-
linalg_tensorsolve() - Computes the solution
Xto the systemtorch_tensordot(A, X) = B.
-
linalg_vector_norm() - Computes a vector norm.
-
cuda_amp_grad_scaler() - Creates a gradient scaler
-
cuda_current_device() - Returns the index of a currently selected device.
-
cuda_device_count() - Returns the number of GPUs available.
-
cuda_dump_memory_snapshot() - Save CUDA Memory State Snapshot to File
-
cuda_empty_cache() - Empty cache
-
cuda_get_device_capability() - Returns the major and minor CUDA capability of
device
-
cuda_is_available() - Returns a bool indicating if CUDA is currently available.
-
cuda_memory_snapshot() - Capture CUDA Memory State Snapshot
-
cuda_memory_stats()cuda_memory_summary() - Returns a dictionary of CUDA memory allocator statistics for a given device.
-
cuda_record_memory_history() - Enable Recording of Memory Allocation Stack Traces
-
cuda_runtime_version() - Returns the CUDA runtime version
-
cuda_synchronize() - Waits for all kernels in all streams on a CUDA device to complete.
-
torch_get_rng_state()torch_set_rng_state()cuda_get_rng_state()cuda_set_rng_state() - RNG state management
-
jit_compile() - Compile TorchScript code into a graph
-
jit_load() - Loads a
script_functionorscript_modulepreviously saved withjit_save
-
jit_ops - Enable idiomatic access to JIT operators from R.
-
jit_save() - Saves a
script_functionto a path
-
jit_save_for_mobile() - Saves a
script_functionorscript_modulein bytecode form, to be loaded on a mobile device
-
jit_scalar() - Adds the 'jit_scalar' class to the input
-
jit_serialize() - Serialize a Script Module
-
jit_trace() - Trace a function and return an executable
script_function.
-
jit_trace_module() - Trace a module
-
jit_tuple() - Adds the 'jit_tuple' class to the input
-
jit_unserialize() - Unserialize a Script Module
-
backends_cudnn_is_available() - CuDNN is available
-
backends_cudnn_version() - CuDNN version
-
backends_mkl_is_available() - MKL is available
-
backends_mkldnn_is_available() - MKLDNN is available
-
backends_mps_is_available() - MPS is available
-
backends_openmp_is_available() - OpenMP is available
-
install_torch() - Install Torch
-
get_install_libs_url()install_torch_from_file() - Install Torch from files
-
contrib_sort_vertices() - Contrib sort vertices