Conv2d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv2d.Rd
Conv2d
Usage
torch_conv2d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kH , kW)\)
- bias
optional bias tensor of shape \((\mbox{out\_channels})\). Default:
NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sH, sW)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a tuple
(padH, padW)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dH, dW)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv2d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 2D convolution over an input image composed of several input planes.
See nn_conv2d()
for details and output shape.
Examples
if (torch_is_installed()) {
# With square kernels and equal stride
filters = torch_randn(c(8,4,3,3))
inputs = torch_randn(c(1,4,5,5))
nnf_conv2d(inputs, filters, padding=1)
}
#> torch_tensor
#> (1,1,.,.) =
#> -5.6926 3.6664 -6.1840 -1.1465 2.3333
#> -3.5719 -1.0030 -6.6127 -5.5974 -3.0202
#> -11.3880 -0.1526 -4.0290 -6.4884 -0.8734
#> -0.4170 -10.5567 3.5576 -2.2289 0.5714
#> 2.2486 -4.2168 -0.8165 -7.9505 0.5207
#>
#> (1,2,.,.) =
#> 1.2942 -3.9079 -2.6725 7.3195 -4.1647
#> 1.2835 3.4129 -5.9809 -0.8689 -2.4085
#> 0.0943 -1.0464 -5.6167 4.9792 -6.2590
#> 1.0954 6.2196 -2.4399 0.8718 -1.0243
#> 5.4097 -4.4769 -4.2346 -1.4191 0.6925
#>
#> (1,3,.,.) =
#> 0.6000 1.0499 3.7814 3.5483 1.7238
#> -4.7591 0.5203 0.3688 -6.7972 10.4535
#> -5.2558 -0.1668 15.0585 -0.0842 5.0301
#> -1.1866 0.7594 10.5002 0.4953 2.6495
#> 4.0079 -0.0336 8.2732 2.3334 0.8182
#>
#> (1,4,.,.) =
#> -6.5214 3.3681 -5.2806 -5.8420 7.9082
#> -6.9348 0.9661 5.3649 -8.7740 3.7408
#> -7.6552 0.7153 4.9676 -2.7418 0.6383
#> 2.7019 0.0574 0.0613 3.3370 -0.0993
#> 2.8228 -2.0183 4.0642 -0.7295 -4.0679
#>
#> (1,5,.,.) =
#> 6.1298 -0.8779 -2.6865 5.7750 -1.8942
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{1,8,5,5} ]