Skip to contents

Conv2d

Usage

torch_conv2d(
  input,
  weight,
  bias = list(),
  stride = 1L,
  padding = 0L,
  dilation = 1L,
  groups = 1L
)

Arguments

input

input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)

weight

filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kH , kW)\)

bias

optional bias tensor of shape \((\mbox{out\_channels})\). Default: NULL

stride

the stride of the convolving kernel. Can be a single number or a tuple (sH, sW). Default: 1

padding

implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: 0

dilation

the spacing between kernel elements. Can be a single number or a tuple (dH, dW). Default: 1

groups

split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1

conv2d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 2D convolution over an input image composed of several input planes.

See nn_conv2d() for details and output shape.

Examples

if (torch_is_installed()) {

# With square kernels and equal stride
filters = torch_randn(c(8,4,3,3))
inputs = torch_randn(c(1,4,5,5))
nnf_conv2d(inputs, filters, padding=1)
}
#> torch_tensor
#> (1,1,.,.) = 
#>  -7.0066  4.4925 -16.1039  2.9467 -0.7041
#>  -6.3461  7.5743 -9.2212  2.8496 -6.2783
#>   3.0018  3.6653  3.9287  4.3608 -7.3198
#>   3.2666 -9.4097  4.4943  8.0171 -19.7106
#>   0.7662 -0.9384  5.2524 -5.5255 -0.0248
#> 
#> (1,2,.,.) = 
#>    3.8501   9.1569  -3.4568  -0.9357   1.2627
#>   -3.3323  -5.6714  -1.2168   2.8138  -2.9487
#>    0.6927  -0.4000   3.0222   0.9015  -1.8428
#>    0.0012   0.4966 -10.8579  11.9719  -6.3325
#>    1.4279   2.8926   2.3333  -3.6666  -9.0881
#> 
#> (1,3,.,.) = 
#>   -7.8250   0.4249   0.3988   9.8024  -2.2569
#>    3.0475   1.0591 -10.3694   7.2950  -2.7880
#>    3.6239  -1.0246   3.6069  -9.1539   0.3733
#>   -6.0142  10.7805   2.9294  -5.2215   9.2369
#>   -0.2793  -3.6346   2.5180  -0.2760  -5.6622
#> 
#> (1,4,.,.) = 
#>   4.3047  3.5312  6.4958  1.4355  5.4987
#>   4.5059  1.0209  6.0836  2.1999  2.1736
#>  -4.5698 -11.7424  2.0312 -4.8006  4.7962
#>   1.3183 -2.5849 -4.9302  6.5903 -0.8207
#>  -0.7663  0.6811 -0.4265  1.9395  0.7642
#> 
#> (1,5,.,.) = 
#>    2.6178  -3.2662   0.1016  -5.3442  -0.8028
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{1,8,5,5} ]