Conv_transpose2d
Source:R/gen-namespace-docs.R, R/gen-namespace-examples.R, R/gen-namespace.R
torch_conv_transpose2d.RdConv_transpose2d
Usage
torch_conv_transpose2d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kH , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sH, sW). Default: 1- padding
dilation * (kernel_size - 1) - paddingzero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padH, padW). Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padH, out_padW). Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dH, dW). Default: 1
conv_transpose2d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose2d() for details and output shape.
Examples
if (torch_is_installed()) {
# With square kernels and equal stride
inputs = torch_randn(c(1, 4, 5, 5))
weights = torch_randn(c(4, 8, 3, 3))
nnf_conv_transpose2d(inputs, weights, padding=1)
}
#> torch_tensor
#> (1,1,.,.) =
#> -16.4915 -7.1084 2.2552 -5.5098 -1.9551
#> -0.0960 -4.6960 0.3408 5.5424 -6.6240
#> -4.6362 6.1942 -3.9790 -12.1864 -10.5656
#> 1.0288 -1.2155 2.6384 -5.0723 -17.1100
#> -1.4404 -2.5701 3.7745 -2.0833 1.3002
#>
#> (1,2,.,.) =
#> -5.1453 1.6284 -2.1693 -5.0362 -4.8813
#> -4.8790 -10.5559 -1.4654 1.2554 -2.5333
#> 2.9571 -3.7017 9.2761 -8.1789 -0.4773
#> -2.7921 7.7110 2.5923 -6.8664 6.9055
#> -4.5503 4.2681 4.6297 -3.0151 0.2031
#>
#> (1,3,.,.) =
#> 1.0281 -9.6812 16.3552 6.3669 -4.6126
#> 0.5148 1.2316 -15.6037 -6.6426 3.6358
#> 5.3912 -0.1138 17.5092 5.3323 -3.8475
#> 6.1143 10.5162 -14.1057 -5.6480 -4.1088
#> 3.8699 3.1543 0.5277 -7.4548 -8.1097
#>
#> (1,4,.,.) =
#> 4.1664 -5.9036 -0.3487 -2.9725 -4.5606
#> -4.1471 5.6767 13.3075 -19.9812 -3.1175
#> 2.0599 -2.7947 8.5322 -8.9522 -1.2739
#> -2.3672 4.9684 8.6299 -12.7486 -4.0735
#> -5.3846 -1.7668 6.3076 -1.4303 6.1592
#>
#> (1,5,.,.) =
#> -0.5800 9.3276 -2.5061 -0.1393 8.5250
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{1,8,5,5} ]