Cholesky
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_cholesky.Rd
Cholesky
cholesky(input, upper=False, out=NULL) -> Tensor
Computes the Cholesky decomposition of a symmetric positive-definite matrix \(A\) or for batches of symmetric positive-definite matrices.
If upper
is TRUE
, the returned matrix U
is upper-triangular, and
the decomposition has the form:
$$
A = U^TU
$$
If upper
is FALSE
, the returned matrix L
is lower-triangular, and
the decomposition has the form:
$$
A = LL^T
$$
If upper
is TRUE
, and \(A\) is a batch of symmetric positive-definite
matrices, then the returned tensor will be composed of upper-triangular Cholesky factors
of each of the individual matrices. Similarly, when upper
is FALSE
, the returned
tensor will be composed of lower-triangular Cholesky factors of each of the individual
matrices.
Examples
if (torch_is_installed()) {
a = torch_randn(c(3, 3))
a = torch_mm(a, a$t()) # make symmetric positive-definite
l = torch_cholesky(a)
a
l
torch_mm(l, l$t())
a = torch_randn(c(3, 2, 2))
if (FALSE) { # \dontrun{
a = torch_matmul(a, a$transpose(-1, -2)) + 1e-03 # make symmetric positive-definite
l = torch_cholesky(a)
z = torch_matmul(l, l$transpose(-1, -2))
torch_max(torch_abs(z - a)) # Max non-zero
} # }
}