Var
var(input, unbiased=TRUE) -> Tensor
Returns the variance of all elements in the input
tensor.
If unbiased
is FALSE
, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
var(input, dim, keepdim=False, unbiased=TRUE, out=NULL) -> Tensor
Returns the variance of each row of the input
tensor in the given
dimension dim
.
If keepdim
is TRUE
, the output tensor is of the same size
as input
except in the dimension(s) dim
where it is of size 1.
Otherwise, dim
is squeezed (see torch_squeeze
), resulting in the
output tensor having 1 (or len(dim)
) fewer dimension(s).
If unbiased
is FALSE
, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
Examples
if (torch_is_installed()) {
a = torch_randn(c(1, 3))
a
torch_var(a)
a = torch_randn(c(4, 4))
a
torch_var(a, 1)
}
#> torch_tensor
#> 0.7107
#> 0.7116
#> 1.3322
#> 1.6740
#> [ CPUFloatType{4} ]