Conv1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv1d.Rd
Conv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default:
NULL
- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d()
for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 1.3253 -4.6588 2.1731 1.4436 0.4239 -3.5681 -3.5062 11.4277
#> 3.1278 6.2965 -9.5875 -9.8928 10.0064 9.3870 -4.3782 -9.4908
#> -14.4924 0.9071 -2.4768 5.7176 -0.6164 -11.0419 4.4035 6.8638
#> -3.7752 7.1191 -3.2018 -14.7920 -0.4969 -3.1979 -17.2714 -13.6381
#> -0.0087 2.4863 -2.5665 -6.3360 -11.7536 -7.6350 -2.7460 -5.0664
#> -4.1200 6.3509 12.0308 7.4958 0.3596 0.2718 5.8559 11.0820
#> 6.3596 0.8484 5.7529 8.7732 -10.5011 -4.5293 17.7433 2.0522
#> 3.7105 -6.5706 -4.0995 3.3578 1.8492 6.5833 5.9011 -7.4979
#> 0.1574 2.2945 3.3310 1.5332 4.6116 -3.2115 -4.2782 10.1443
#> -3.6005 1.9411 -3.2228 -0.0208 5.2345 0.8413 7.5317 5.9898
#> 5.4455 8.7521 -3.7901 3.4534 5.2674 -10.9926 1.1729 2.6905
#> 6.5125 2.4538 -14.4449 1.4616 -1.3603 -8.6483 -4.2813 -10.8432
#> -2.5064 9.3786 -2.3310 5.8062 11.9209 3.9905 -5.4403 -4.8849
#> -1.5111 4.3833 -17.5922 2.6250 1.3776 3.7735 -3.1354 -2.3753
#> 12.1398 1.0453 -2.5355 -5.0478 10.7709 10.9137 -8.0622 -5.8595
#> 5.3040 -4.8179 -6.8195 -1.8480 2.1540 -8.3365 4.6158 1.3832
#> 0.3971 5.9299 7.3874 2.2768 0.7514 4.9970 17.3693 -2.9553
#> 7.6319 -3.7230 -5.4099 0.3353 7.1248 5.2435 2.7309 -9.7317
#> 9.8628 0.0814 -18.8798 2.6261 11.4925 0.5105 -9.3308 2.0090
#> -6.2019 7.5181 0.0596 1.8541 9.6589 5.6446 1.6680 -11.6379
#> 5.4245 9.7640 -11.0519 1.1734 -0.5569 6.6901 5.6946 7.2394
#> 13.7071 -11.8026 12.9395 11.1482 -15.6699 8.4226 19.8847 6.8077
#> 1.7427 10.2747 -8.8432 6.8128 10.8683 -8.2670 -10.8615 -1.0331
#> 6.1548 -12.5983 -1.3775 -5.5777 -3.1294 1.6432 3.9735 4.2585
#> -8.8883 13.1505 2.8622 0.7258 -0.2564 -2.3229 -4.1816 -9.7045
#> -7.5460 9.6440 3.0482 -0.1615 2.5811 -7.1612 3.4498 -1.0770
#> 2.5245 6.4389 -4.1319 -3.8157 3.4292 -5.2298 -7.9886 0.6691
#> 8.5781 -7.3539 1.9563 1.4533 -3.7459 4.7646 -2.6309 -0.0092
#> -1.4993 12.9420 0.7125 -7.6552 3.4191 -2.2467 -3.1731 1.8526
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]