Conv1d
Source:R/gen-namespace-docs.R, R/gen-namespace-examples.R, R/gen-namespace.R
torch_conv1d.RdConv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default:
NULL- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,). Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,). Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,). Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d() for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 6 -7.6300e+00 -1.3585e+00 -3.1643e+00 3.3415e+00 -3.5581e+00 7.2428e+00
#> -5.2401e-01 6.5767e-01 -1.0477e+01 4.0122e+00 7.6638e-01 4.6045e+00
#> 1.4166e+00 9.5717e+00 -5.2018e-01 -7.7267e+00 1.2873e+00 -8.6838e+00
#> 1.0061e+00 6.2838e+00 4.2919e+00 1.0921e+00 1.2625e+01 4.4649e+00
#> 2.3416e-01 -3.3182e-01 -2.3053e-01 -1.2939e+01 8.9212e+00 2.5906e+00
#> -2.3818e+00 -1.1870e+01 -1.6421e+00 -3.4941e+00 1.1204e+01 1.2993e+01
#> -1.3894e+01 2.2251e+00 -6.1084e-01 7.6547e+00 9.9298e+00 7.4196e+00
#> 6.3769e-01 -3.1934e+00 -6.4780e+00 4.5578e-01 -1.2425e+01 -2.4923e-01
#> 6.9175e+00 -3.9134e+00 5.1277e+00 1.5918e+00 -1.4201e+01 -3.6999e+00
#> 8.7734e+00 -3.2359e+00 8.7718e+00 4.9934e-01 1.0709e+01 4.5730e+00
#> -6.8355e+00 2.8346e+00 -7.1111e+00 -9.7834e+00 1.1589e+00 -3.5177e+00
#> 5.7896e+00 -7.4164e-01 1.1781e+01 4.1452e+00 -7.3474e+00 9.5850e+00
#> 4.9037e+00 -2.8005e+00 5.6207e-01 1.0762e+01 -8.5670e+00 -3.6310e+00
#> 2.7419e+00 4.8202e-01 1.6581e+00 3.0009e-01 -1.8480e+00 -3.9726e-01
#> 6.0024e+00 -2.0720e+00 3.6992e+00 -7.8596e+00 -5.5947e+00 -9.3042e+00
#> 1.1852e+00 -1.4299e+00 7.6922e+00 3.6214e+00 -5.2615e+00 -3.0108e+00
#> 3.2865e+00 1.4782e+00 3.3309e+00 1.3141e+01 5.5439e+00 9.8467e+00
#> -1.6810e+00 -2.2276e+00 6.5694e+00 6.1285e+00 -2.4090e+00 5.9491e-01
#> -3.0169e+00 6.0753e+00 1.0108e+01 -5.6399e+00 -6.1327e+00 2.4715e+00
#> 3.0414e+00 -5.1283e+00 -2.3013e+00 1.3995e+01 7.4323e+00 1.3514e+01
#> -9.6343e+00 1.4717e+00 -6.2687e+00 -4.1786e+00 3.9113e+00 2.4174e+00
#> -3.7199e+00 4.1180e+00 -6.7664e+00 7.8996e-02 3.8984e+00 5.3923e+00
#> -9.1347e-01 5.2097e-01 2.5081e+00 2.7902e+00 -3.5013e+00 4.9551e+00
#> 3.2554e+00 -3.3475e+00 9.8589e+00 5.3145e+00 -8.8504e+00 -7.9860e+00
#> 9.6049e+00 3.7402e+00 -2.4565e+00 2.5863e+00 -5.7386e+00 -9.0553e+00
#> -3.1641e+00 4.4166e+00 9.4419e+00 1.5043e+01 6.2037e+00 1.5404e+01
#> 2.6345e+00 9.8827e-01 1.1774e+01 3.5380e+00 -8.2268e+00 -1.7612e+00
#> -1.5381e+00 -3.3915e+00 8.8268e-01 -4.2406e+00 -4.7781e+00 2.1441e+00
#> -5.1637e+00 -1.0505e+00 1.2550e+00 -5.4375e+00 -4.6202e+00 4.3786e+00
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]