Conv1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv1d.Rd
Conv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default:
NULL
- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d()
for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 -4.2799 -4.4055 -7.6185 -3.6413 -7.5131 4.4503 12.4302 -0.6246
#> 1.7820 11.2815 15.3058 2.5497 7.3234 0.0027 -10.2557 6.1521
#> 6.7319 -7.6383 0.4122 -3.1282 0.5867 -13.2591 -3.8448 -5.2541
#> -4.5234 5.8615 5.2040 2.6400 1.5504 -5.1288 7.8689 9.1657
#> 1.5921 -9.1527 -7.8412 6.6396 4.7601 -1.1723 -6.4607 -3.6257
#> 5.3255 -7.3895 0.9591 -0.0180 -4.1197 6.3202 6.3130 8.4903
#> -3.0993 6.3749 8.7024 12.7569 6.9660 -6.5842 3.9414 0.4054
#> 7.9684 7.1598 -9.6735 -0.4639 -6.5569 2.3603 9.3425 2.4212
#> -7.4006 -0.8673 -11.1602 3.0148 5.2737 1.9895 18.0035 -7.5815
#> 4.1510 0.0882 -0.8894 2.7853 -6.1612 -4.3666 15.8519 6.8035
#> 0.0551 -5.5998 -5.5718 -5.0208 -2.6086 -1.5798 3.4159 3.6958
#> 4.9326 3.3454 4.7694 -20.7927 -4.5259 -8.8677 -6.1775 0.2884
#> -9.2756 -11.0536 10.1570 -8.5320 7.1997 7.5796 -13.5387 9.1202
#> 7.6942 2.6654 7.1931 -2.1197 -5.2211 -10.6524 1.2795 -2.3806
#> 6.9804 1.1636 -11.7477 -0.4564 5.4912 4.7557 7.8871 -5.5879
#> 1.3042 -0.0151 -3.8278 -9.6159 -13.3710 -5.5168 3.3523 4.1783
#> 6.7552 -10.0832 -3.2173 2.9196 7.2266 9.8423 1.2781 -2.5732
#> 6.1371 -0.0244 7.5641 -0.5036 4.0956 -6.5192 -2.8360 7.7989
#> 2.2528 9.6603 10.6675 8.4282 -6.9757 -14.2541 -8.1621 -6.9910
#> 8.8926 -2.7399 -10.1791 0.7602 0.3328 -1.9903 2.8115 -7.6494
#> 6.0896 0.4523 -3.8656 -1.9457 -2.5374 -2.1337 6.4756 1.8318
#> -5.5806 -7.6214 -0.0251 -15.2107 0.9737 -5.4552 -1.9320 3.1738
#> -0.2481 0.0856 7.8390 9.7375 -8.8718 -7.1358 -5.8276 -3.8133
#> -3.9938 -11.1520 2.7522 5.5041 -8.3037 -6.4006 -7.6681 -6.7562
#> -11.1665 5.2830 -4.3023 -1.4715 0.5730 -2.5748 -8.8762 6.7086
#> -5.3044 -1.7767 2.1370 0.3335 -4.1531 -8.9707 -10.8596 -5.2838
#> 4.3987 -4.4244 -1.9234 -7.0934 2.9753 3.3248 1.1382 3.2683
#> 14.1857 9.1710 8.3437 -10.4215 -4.2963 -12.3506 5.2811 5.7495
#> 8.5927 4.8413 -5.3993 -11.4106 -12.2129 -2.8460 5.5478 3.4733
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]