Conv1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv1d.Rd
Conv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default:
NULL
- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d()
for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 -6.5423 5.8292 2.1301 9.8757 5.0527 2.9301 -7.8724 -9.9589
#> -8.4360 -5.5698 3.8586 0.4653 -2.0081 3.6169 -5.9865 -7.0142
#> -4.9530 -0.0715 -1.5879 -15.2245 4.4054 -2.4457 16.9565 -0.5127
#> -1.4222 5.5428 4.8601 -9.0962 8.4197 -12.0085 15.2258 -0.0257
#> 1.5579 8.4882 1.5763 4.2697 10.7162 -13.5989 4.2508 1.3128
#> -4.9069 4.4334 -7.1795 0.2593 -1.9644 -7.8766 -2.5244 7.9853
#> -2.6823 -0.0387 -3.0720 -7.6783 8.9129 -16.7570 3.4913 -8.1394
#> -2.9913 -3.9623 -4.3750 8.7784 2.6321 8.3151 0.6707 -8.3441
#> -3.7127 -16.0610 5.2007 0.9932 -5.5197 -0.1969 -11.5819 -8.6211
#> -6.9922 -11.3149 -11.1871 -7.3527 0.4165 -4.7087 2.1307 17.4993
#> 1.1608 -4.7244 -4.4014 16.1602 -6.7607 10.8913 0.3380 -0.2487
#> -4.8985 -5.2659 4.4458 4.9943 -3.9965 0.8129 -0.4502 2.1250
#> 6.2574 -4.3700 -1.4915 9.4067 -8.6351 2.6245 -9.3461 -8.3367
#> -1.9540 -3.3729 -7.2350 6.0237 -0.3011 6.9989 -0.7064 -6.2871
#> -1.7192 1.2123 -1.2035 0.8997 -17.6134 -7.1392 -3.7051 16.3590
#> -1.2008 -9.5683 13.8626 -1.7313 5.0631 -8.7309 5.1955 5.7694
#> 5.6794 3.8339 -7.5278 -4.8827 -14.2746 -5.7771 -6.7245 0.7738
#> 3.3087 -7.5384 2.8028 1.7923 9.2609 0.3526 -4.6701 -1.2176
#> -2.9484 1.8263 -6.2848 7.9557 12.3277 -12.3458 13.1852 -7.8474
#> 5.6359 3.7645 4.1574 2.4562 5.0812 10.9621 -6.3501 11.2769
#> -8.9129 5.0768 -4.3795 -8.9234 11.0471 -18.8720 6.1349 9.9895
#> -8.2568 -12.3392 -5.6785 -5.8478 -2.1199 11.3817 -13.9812 13.7217
#> 6.1360 7.4402 2.0855 -1.3762 1.1808 -12.5978 -6.4557 0.3239
#> -10.9461 -4.4320 -4.9298 -10.0698 10.0514 -6.2777 10.5519 4.6538
#> -0.6784 5.8729 -3.7604 -2.8887 0.8702 0.6454 -14.3181 -0.7408
#> 2.3048 17.1698 7.8892 -4.6586 -1.5689 8.5414 -6.1121 6.0690
#> 4.5289 -13.5405 -3.7432 7.6128 12.7659 4.0483 -3.4360 -4.8060
#> -5.6532 2.3120 2.9335 -12.8453 5.6602 -17.6635 0.2414 -1.8911
#> 7.1887 0.5034 -5.6625 0.7569 -10.7164 13.1485 -5.1950 -0.9280
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]