Context-manager that enable anomaly detection for the autograd engine.
Source:R/autograd.R
with_detect_anomaly.Rd
This does two things:
Details
Running the forward pass with detection enabled will allow the backward pass to print the traceback of the forward operation that created the failing backward function.
Any backward computation that generate "nan" value will raise an error.
Warning
This mode should be enabled only for debugging as the different tests will slow down your program execution.
Examples
if (torch_is_installed()) {
x <- torch_randn(2, requires_grad = TRUE)
y <- torch_randn(1)
b <- (x^y)$sum()
y$add_(1)
try({
b$backward()
with_detect_anomaly({
b$backward()
})
})
}
#> Error in (function (self, inputs, gradient, retain_graph, create_graph) :
#> one of the variables needed for gradient computation has been modified by an inplace operation: [CPUFloatType [1]] is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
#> Exception raised from unpack at /Users/runner/work/libtorch-mac-m1/libtorch-mac-m1/pytorch/torch/csrc/autograd/saved_variable.cpp:187 (most recent call first):
#> frame #0: std::__1::shared_ptr<c10::(anonymous namespace)::PyTorchStyleBacktrace> std::__1::make_shared[abi:ue170006]<c10::(anonymous namespace)::PyTorchStyleBacktrace, c10::SourceLocation&, void>(c10::SourceLocation&) + 121 (0x1132fc639 in libc10.dylib)
#> frame #1: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 54 (0x1132fc776 in libc10.dylib)
#> frame #2: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 149 (0x1132f9035 in libc10.dylib)
#> frame #3: torch::autograd::SavedVariable::unpack(std::__1::shared_ptr<torch::autograd::Node>) const + 1987 (0x1295ac6f3 in libtorch_cpu.dylib)
#> frame #4: torch::autograd::generated::PowBackward1::apply(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 84 (0x1284231a4 in libtorch_cpu.dylib)
#> frame #5: torch::autograd::Node::operator()(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 104 (0x129573108 in libtorch_cpu.dylib)
#> frame #6: torch::autograd::Engine::evaluate_function(std::__1::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::__1::shared_ptr<torch::autograd::ReadyQueue> const&) + 3039 (0x12956bbdf in libtorch_cpu.dylib)
#> frame #7: torch::autograd::Engine::thread_main(std::__1::shared_ptr<torch::autograd::GraphTask> const&) + 1140 (0x12956a9d4 in libtorch_cpu.dylib)
#> frame #8: torch::autograd::Engine::execute_with_graph_task(std::__1::shared_ptr<torch::autograd::GraphTask> const&, std::__1::shared_ptr<torch::autograd::Node>, torch::autograd::InputBuffer&&) + 415 (0x12957255f in libtorch_cpu.dylib)
#> frame #9: torch::autograd::Engine::execute(std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, bool, std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&) + 1786 (0x129570dda in libtorch_cpu.dylib)
#> frame #10: torch::autograd::run_backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool) + 982 (0x129558186 in libtorch_cpu.dylib)
#> frame #11: torch::autograd::backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::optional<bool>, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&) + 107 (0x12955768b in libtorch_cpu.dylib)
#> frame #12: torch::autograd::VariableHooks::_backward(at::Tensor const&, c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 296 (0x1295b1918 in libtorch_cpu.dylib)
#> frame #13: at::Tensor::_backward(c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 73 (0x125577419 in libtorch_cpu.dylib)
#> frame #14: _lantern_Tensor__backward_tensor_tensorlist_tensor_bool_bool + 211 (0x1165770c3 in liblantern.dylib)
#> frame #15: std::__1::__function::__func<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2, std::__1::allocator<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2>, void ()>::operator()() + 54 (0x114e03bf6 in torchpkg.so)
#> frame #16: std::__1::packaged_task<void ()>::operator()() + 72 (0x114e01cc8 in torchpkg.so)
#> frame #17: EventLoop<void>::run() + 413 (0x114e01b1d in torchpkg.so)
#> frame #18: void* std::__1::__thread_proxy[abi:v160006]<std::__1::tuple<std::__1::unique_ptr<std::__1::__thread_struct, std::__1::default_delete<std::__1::__thread_struct>>, ThreadPool<void>::ThreadPool(int)::'lambda'()>>(void*) + 50 (0x114e01872 in torchpkg.so)
#> frame #19: _pthread_start + 125 (0x7ff8075061d3 in libsystem_pthread.dylib)
#> frame #20: thread_start + 15 (0x7ff807501bd3 in libsystem_pthread.dylib)
#>