Arange
Usage
torch_arange(
start,
end,
step = 1L,
dtype = NULL,
layout = NULL,
device = NULL,
requires_grad = FALSE
)Arguments
- start
(Number) the starting value for the set of points. Default:
0.- end
(Number) the ending value for the set of points
- step
(Number) the gap between each pair of adjacent points. Default:
1.- dtype
(
torch.dtype, optional) the desired data type of returned tensor. Default: ifNULL, uses a global default (seetorch_set_default_tensor_type). Ifdtypeis not given, infer the data type from the other input arguments. If any ofstart,end, orstopare floating-point, thedtypeis inferred to be the default dtype, see~torch.get_default_dtype. Otherwise, thedtypeis inferred to betorch.int64.- layout
(
torch.layout, optional) the desired layout of returned Tensor. Default:torch_strided.- device
(
torch.device, optional) the desired device of returned tensor. Default: ifNULL, uses the current device for the default tensor type (seetorch_set_default_tensor_type).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default:
FALSE.
arange(start=0, end, step=1, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor
Returns a 1-D tensor of size \(\left\lceil \frac{\mbox{end} - \mbox{start}}{\mbox{step}} \right\rceil\)
with values from the interval [start, end) taken with common difference
step beginning from start.
Note that non-integer step is subject to floating point rounding errors when
comparing against end; to avoid inconsistency, we advise adding a small epsilon to end
in such cases.
$$ \mbox{out}_{{i+1}} = \mbox{out}_{i} + \mbox{step} $$
Examples
if (torch_is_installed()) {
torch_arange(start = 0, end = 5)
torch_arange(1, 4)
torch_arange(1, 2.5, 0.5)
}
#> torch_tensor
#> 1.0000
#> 1.5000
#> 2.0000
#> 2.5000
#> [ CPUFloatType{4} ]