Performs \(L_p\) normalization of inputs over specified dimension.
Arguments
- input
- input tensor of any shape 
- p
- (float) the exponent value in the norm formulation. Default: 2 
- dim
- (int) the dimension to reduce. Default: 1 
- eps
- (float) small value to avoid division by zero. Default: 1e-12 
- out
- (Tensor, optional) the output tensor. If - outis used, this operation won't be differentiable.
Details
For a tensor input of sizes \((n_0, ..., n_{dim}, ..., n_k)\), each
\(n_{dim}\) -element vector \(v\) along dimension dim is transformed as
$$ v = \frac{v}{\max(\Vert v \Vert_p, \epsilon)}. $$
With the default arguments it uses the Euclidean norm over vectors along dimension \(1\) for normalization.