Cholesky_inverse

## Usage

torch_cholesky_inverse(self, upper = FALSE)

## Arguments

self

(Tensor) the input 2-D tensor $$u$$, a upper or lower triangular Cholesky factor

upper

(bool, optional) whether to return a lower (default) or upper triangular matrix

## cholesky_inverse(input, upper=False, out=NULL) -> Tensor

Computes the inverse of a symmetric positive-definite matrix $$A$$ using its Cholesky factor $$u$$: returns matrix inv. The inverse is computed using LAPACK routines dpotri and spotri (and the corresponding MAGMA routines).

If upper is FALSE, $$u$$ is lower triangular such that the returned tensor is

$$inv = (uu^{{T}})^{{-1}}$$ If upper is TRUE or not provided, $$u$$ is upper triangular such that the returned tensor is

$$inv = (u^T u)^{{-1}}$$

## Examples

if (torch_is_installed()) {

if (FALSE) {
a = torch_randn(c(3, 3))
a = torch_mm(a, a$t()) + 1e-05 * torch_eye(3) # make symmetric positive definite u = torch_cholesky(a) a torch_cholesky_inverse(u) a$inverse()
}
}