Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 4.2270 5.0435 -6.3353 -2.4479 8.4927 -6.1353 -9.1178 12.6868
#> -2.9427 7.0022 -15.1601 -10.2996 -2.5924 -3.7390 -1.6518 2.4021
#> -2.3510 5.5449 -4.1644 -1.8604 -4.8461 -6.2622 19.9087 2.0569
#> -9.2569 -4.7835 -10.5825 -5.4597 -4.7332 7.8321 7.1915 6.2045
#> -5.2800 1.9405 0.2351 5.3755 20.5965 18.0771 -13.9757 -0.4939
#> -1.4126 -16.6875 2.7980 -9.6152 -0.4819 19.7436 12.3265 -4.8315
#> 9.2663 -0.1116 -6.0854 12.6699 3.5912 -16.2702 11.2045 11.5435
#> 5.5750 1.4520 -1.3390 -7.4680 -2.3386 8.8593 3.3055 14.0850
#> 0.5688 4.1446 13.7972 -9.7780 -2.4835 9.6557 -5.3873 -12.0718
#> 2.0181 2.2470 9.0182 0.0189 -22.3235 -2.6539 -9.1116 6.3429
#> 4.7949 3.0544 7.3213 1.6739 6.4301 -16.8928 1.0165 -7.1461
#> 5.7287 10.7683 4.4464 -4.0700 9.1727 -4.0279 5.2919 4.2868
#> -3.0581 -1.3749 1.7676 16.6810 3.5666 -3.2760 -1.5714 -5.9691
#> -3.8267 9.7193 -1.0998 -11.1353 -3.2276 -14.4728 1.7085 2.4879
#> 6.5456 13.3775 0.2992 -4.1042 -10.6194 -0.3149 1.2752 -3.9367
#> 13.1684 17.4268 20.2063 8.4135 3.1918 0.4891 12.7423 2.3491
#> -7.6872 -3.9823 2.5146 -3.0340 -11.2203 6.1164 17.3029 7.0512
#> 5.9296 5.5207 3.2273 8.0103 3.4446 -7.9687 2.7664 -14.6469
#> 3.1046 6.4510 10.8277 -5.9371 -1.6030 17.7204 -0.2348 14.8925
#> -8.5329 -3.9996 -6.0822 8.1753 -13.5728 -18.1530 -12.5042 0.6704
#> -0.1518 -0.1976 -1.0316 3.8487 -12.2593 -2.6938 14.5915 -7.4405
#> 4.0566 -8.2976 1.4823 -9.5261 7.2054 -7.9948 4.6697 3.9695
#> 7.4532 8.0343 -0.3438 0.7933 -2.6172 -0.8538 -10.1818 -6.2209
#> 1.7606 -0.1643 6.7495 -14.5220 2.1626 9.4029 -14.1111 -1.7901
#> 2.6798 1.0328 -0.0210 -4.9384 -1.6294 -17.2422 -6.5565 10.2851
#> -6.5548 -5.3228 -6.7359 -2.7867 -20.5028 2.1835 -1.1009 -1.0414
#> -0.5036 12.0141 -6.9928 -16.9730 18.0522 -4.1067 5.2717 9.8320
#> 7.5293 -1.6353 0.3498 -4.8461 12.0565 -11.3932 -2.9709 10.6226
#> -2.3232 -7.0977 1.7088 -7.4353 -11.8017 -2.3758 -1.3809 -8.2254
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]