Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 -4.7696 -2.8940 1.5367 11.9202 6.9588 6.8900 -7.8707 -3.0269
#> 1.9332 -3.6600 -10.3648 4.6100 1.0884 8.1124 4.2168 11.4249
#> 1.6623 2.2792 -0.4219 -14.5193 2.3775 6.3519 -3.5956 -9.9562
#> 2.0600 -0.6124 2.1332 3.9518 -2.8784 -2.9404 -13.9075 -0.5227
#> 4.8003 3.8980 4.8343 11.0290 -14.0322 -0.5301 -0.2151 -8.1132
#> 2.2644 -7.4201 -1.1963 13.7711 -5.3473 -19.8623 6.9019 -0.7380
#> 0.5485 -0.8705 0.7581 5.1667 -13.5690 6.7805 1.6512 10.3643
#> 2.2890 -0.2134 2.0931 8.3469 -5.9853 1.3560 4.0922 6.3439
#> -5.0548 -1.8819 1.9894 12.8753 -1.6963 -4.3097 1.5606 3.7400
#> 2.5202 -1.9767 3.8232 -9.9251 5.3089 -12.0474 7.0715 -10.8383
#> 0.1718 2.6484 1.7188 -9.9803 13.7730 -5.4827 -18.9986 9.9721
#> -2.6194 2.3181 -4.4759 -0.2194 -9.1969 16.2701 -3.8546 -6.8419
#> -2.5503 4.4713 -7.8062 0.6898 -0.6400 -6.8276 15.3370 -16.5785
#> -7.6800 6.4260 2.6429 4.6031 19.4087 -10.7362 -18.0581 5.4812
#> -3.6878 -1.4446 3.8696 14.0295 -2.2282 1.5008 3.8754 27.0040
#> -0.0017 6.3336 -3.5041 -6.8385 -4.5726 6.4297 8.2359 4.0597
#> -2.4606 -1.4065 4.3271 -10.3850 -4.9211 -17.9213 0.7216 6.2356
#> -1.5179 3.1900 3.9493 3.1257 -9.6468 1.4326 1.3489 7.5082
#> -2.2330 0.7512 7.0323 19.7707 7.1260 -2.5093 0.7749 5.0011
#> 0.7939 -7.0845 4.9277 -1.4495 6.0507 -8.1035 10.8001 1.6986
#> 0.3231 -3.1512 4.6537 4.2055 1.0295 -2.7192 8.8490 0.7404
#> 0.5448 2.7722 -0.4173 14.5076 2.8634 4.6111 -3.6748 19.1798
#> 4.5329 0.3070 -4.9178 -5.7158 6.4690 12.7364 9.9333 5.1336
#> 1.8342 -9.8516 -12.1799 8.8505 -0.4872 -12.2198 -4.8120 -1.7788
#> -3.6077 7.3123 -3.1200 -7.4460 17.9627 4.1050 -10.9884 -2.4110
#> -1.5733 -9.6317 4.0961 -10.2130 -3.6755 1.9549 -12.3862 -10.9222
#> 0.1818 -6.2733 -4.5201 3.9216 6.8123 5.7648 3.2555 5.7276
#> 0.2800 8.7789 -8.2849 0.2010 -5.7104 9.9855 -0.3018 10.5614
#> -1.2727 2.9694 -0.8900 1.9983 0.7168 -0.4254 10.1794 1.5611
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]