Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 -2.7172 -5.5210 7.9374 3.0906 21.3580 -12.6189 -4.3258 5.3093
#> 1.3885 -12.0791 -11.1986 7.9128 2.8482 1.6760 -3.1183 7.3039
#> 2.4756 -7.9809 -6.5201 12.1861 7.5359 -6.6329 11.6449 -1.0432
#> 0.4642 0.9392 2.3865 -3.0983 -3.7857 -5.9992 -3.8601 -10.1172
#> -1.1430 0.7860 -7.5414 -4.1419 -4.2946 -0.9784 3.2830 3.0879
#> 9.2455 -0.1982 1.3323 -4.7387 5.7670 1.2136 3.1590 -2.7698
#> -2.5656 -3.8974 2.4592 -3.4115 11.9612 2.9927 -4.9330 10.8563
#> 0.8006 2.4989 -4.9836 10.0608 -0.5890 1.9800 8.0270 0.5575
#> 0.9505 3.0838 -2.3031 7.4922 3.3415 4.7355 1.3100 6.0895
#> 5.1837 -7.9399 1.3173 3.6236 0.7248 -6.4314 -0.7245 -9.9812
#> -0.5216 -1.5727 1.0716 -8.4569 -6.8553 -6.1901 1.4440 4.1978
#> -1.6952 -8.3790 -6.1057 -13.4262 -2.9027 -8.2298 7.7478 -5.3998
#> 5.6673 -4.3327 -0.4105 3.7569 -10.2672 4.3275 17.1337 15.0232
#> -1.9419 -4.5694 -11.3853 12.0499 3.9334 -5.0898 -1.2279 0.6043
#> -6.8327 -3.8372 1.8230 -21.0385 -7.1487 1.6563 -4.2593 -0.3652
#> -0.9802 1.3503 3.7497 0.7901 2.9292 1.3497 7.8661 -0.7266
#> -0.8863 -7.5690 4.4432 -14.6916 5.3799 -15.6941 -14.4122 -15.9588
#> -4.2796 -2.7611 -6.4002 4.9127 -12.0253 -4.3114 -5.5047 -1.5682
#> 4.5966 -1.8511 -7.2233 -8.8994 3.2151 -0.4425 -8.4078 -1.6743
#> 2.8360 -0.9185 -5.6618 24.6701 2.6244 -3.7442 7.8791 -10.1859
#> -1.5336 0.0708 2.7975 5.0025 -4.7435 2.2739 5.3512 -0.6133
#> 3.8462 -2.4170 14.4165 -5.7716 0.6435 -3.8622 2.6614 -0.1407
#> -2.0673 -2.9854 3.5136 11.7400 11.0300 -6.6886 -7.5463 7.8790
#> -1.8618 -6.4786 -1.9332 -5.9230 -0.6521 -9.2760 17.0369 10.8966
#> 5.3522 -4.3344 11.2488 4.6717 0.6802 2.8945 3.6235 -13.5183
#> -1.6061 3.7639 -4.4445 -6.9303 8.4169 1.2716 -0.9037 6.4759
#> 2.1588 -0.3700 -5.0320 -6.8052 8.9850 -7.2337 -15.6611 2.8269
#> 1.8823 0.5136 17.5939 3.1880 13.8826 20.2181 -2.5064 2.9825
#> 6.7815 0.2294 -6.3192 7.3882 -2.7959 5.7683 -16.8174 3.9043
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]