Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 -3.7970 0.0306 -7.4101 0.5487 0.0371 4.3148 17.2155 3.1767
#> 4.1434 -5.0221 -10.4293 5.7540 5.5839 15.3002 7.5529 -11.4765
#> 2.6183 -0.5493 3.3843 -2.5425 -0.2725 11.1694 -4.5535 -0.8787
#> 3.0417 -3.5166 0.9537 12.4083 -22.2861 2.2683 -5.6730 -6.2020
#> 2.1646 -5.1454 5.2118 -6.6245 -10.1774 -3.4324 -2.0887 -8.2300
#> -5.9577 -6.4750 -3.3738 -9.1615 6.7858 -5.5065 15.3239 -11.6739
#> -1.2773 -5.4539 -10.3425 6.8600 4.9792 -3.9591 5.7845 -11.7479
#> -0.3564 -1.0379 -0.6918 11.8887 0.6291 3.9001 7.0605 -6.1026
#> 1.2340 0.1320 8.7304 -3.7244 -19.7005 -5.4760 -9.2298 15.7800
#> -7.8940 1.1021 5.3811 1.2006 12.6921 6.9255 -3.6718 -8.3819
#> 10.4269 -0.1915 -1.2430 4.9537 -6.4828 -11.2792 10.4432 -7.9728
#> -1.5812 -12.4732 0.9906 -2.6339 14.5224 3.9006 -9.1899 14.9470
#> 2.7218 -3.3650 7.7006 4.8242 1.7608 -3.2149 -4.9169 -2.6257
#> 2.5254 0.0641 -7.2430 -6.4259 -6.0820 10.7569 7.1801 2.0341
#> 4.4664 4.3091 7.9897 9.4205 4.3075 7.0819 20.3309 11.2183
#> 2.9179 -6.4646 -3.6986 -3.0834 3.2651 -8.0544 -3.6222 7.0325
#> 2.9445 0.9819 3.7767 6.7219 0.9007 2.3822 1.7560 1.9586
#> -3.0140 -0.0712 -8.1481 -12.0154 0.7664 -1.0021 -5.7423 3.6251
#> 3.4531 -7.4723 -7.1601 0.9353 -10.0990 16.7257 -7.6331 9.0751
#> 1.0915 -6.1857 0.7525 -3.6888 1.4935 -6.2711 1.7286 1.8451
#> -7.5245 4.1856 0.3041 -12.5019 8.1194 -10.9233 12.1739 -17.1902
#> 6.7848 6.9474 4.5384 -0.9641 -10.8215 -0.1875 -8.6932 15.1684
#> -2.2501 0.2668 4.5704 7.0512 7.1663 5.0249 0.3187 -7.0778
#> 1.8420 -3.4783 1.0221 -4.9485 1.0261 25.6142 -15.4773 5.9593
#> 0.9120 -1.9754 -12.3742 -3.7374 -6.0467 -6.1327 0.5563 -14.7642
#> -0.4196 5.3070 -1.8569 -16.2045 -13.1267 -6.6503 0.5715 -13.2106
#> 0.0047 1.7316 -12.6317 -5.8735 1.2397 2.4749 6.5785 -11.0904
#> -0.9311 10.4083 -0.5375 -2.7337 9.6201 0.8769 12.7970 -4.8749
#> -3.9516 11.9967 -4.8738 -13.4600 -0.1229 -18.9877 24.1917 -7.8215
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]