Allow regions of your code to run in mixed precision. In these regions, ops run in an op-specific dtype chosen by autocast to improve performance while maintaining accuracy.
Usage
local_autocast(
device_type,
dtype = NULL,
enabled = TRUE,
cache_enabled = NULL,
...,
.env = parent.frame()
)
with_autocast(
code,
...,
device_type,
dtype = NULL,
enabled = TRUE,
cache_enabled = NULL
)
set_autocast(device_type, dtype = NULL, enabled = TRUE, cache_enabled = NULL)
unset_autocast(context)
Arguments
- device_type
a character string indicating whether to use 'cuda' or 'cpu' device
- dtype
a torch data type indicating whether to use
torch_float16()
ortorch_bfloat16()
.- enabled
a logical value indicating whether autocasting should be enabled in the region. Default: TRUE
- cache_enabled
a logical value indicating whether the weight cache inside autocast should be enabled.
- ...
currently unused.
- .env
The environment to use for scoping.
- code
code to be executed with no gradient recording.
- context
Returned by
set_autocast
and should be passed when unsetting it.
Details
When entering an autocast-enabled region, Tensors may be any type.
You should not call half()
or bfloat16()
on your model(s) or inputs
when using autocasting.
autocast
should only be enabled during the forward pass(es) of your network,
including the loss computation(s). Backward passes under autocast are not
recommended. Backward ops run in the same type that autocast used for
corresponding forward ops.
Functions
with_autocast()
: A with context for automatic mixed precision.set_autocast()
: Set the autocast context. For advanced users only.unset_autocast()
: Unset the autocast context.
See also
cuda_amp_grad_scaler()
to perform dynamic gradient scaling.
Examples
if (torch_is_installed()) {
x <- torch_randn(5, 5, dtype = torch_float32())
y <- torch_randn(5, 5, dtype = torch_float32())
foo <- function(x, y) {
local_autocast(device = "cpu")
z <- torch_mm(x, y)
w <- torch_mm(z, x)
w
}
out <- foo(x, y)
}