Skip to contents

Computes the batchwise pairwise distance between vectors \(v_1\), \(v_2\) using the p-norm:

Usage

nn_pairwise_distance(p = 2, eps = 1e-06, keepdim = FALSE)

Arguments

p

(real): the norm degree. Default: 2

eps

(float, optional): Small value to avoid division by zero. Default: 1e-6

keepdim

(bool, optional): Determines whether or not to keep the vector dimension. Default: FALSE

Details

$$ \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. $$

Shape

  • Input1: \((N, D)\) where D = vector dimension

  • Input2: \((N, D)\), same shape as the Input1

  • Output: \((N)\). If keepdim is TRUE, then \((N, 1)\).

Examples

if (torch_is_installed()) {
pdist <- nn_pairwise_distance(p = 2)
input1 <- torch_randn(100, 128)
input2 <- torch_randn(100, 128)
output <- pdist(input1, input2)
}